

East Gosford, NSW 2250 M 0466 385 221 ben@benvirongroup.com.au www.benvirongroup.com.au ABN 52 119 978 063

Geotechnical Investigation Report

Proposed Residential Development at 185 Fifth Ave, Austral NSW

Prepared for

GM Architects Pty Ltd

Report No. P2017-014-G217 Rev 0

June 2017

DOCUMENT CONTROL REGISTER

Document Information					
Job Number	P2017-014-G217				
Document Number	1				
Report Title	Geotechnical Assessment				
Site Address	185 Fifth Avenue, Austral				
Prepared for	GM Architects Pty Ltd				

Document Review						
Revision Number	Revision NumberDate IssuedDescriptionIssued By					
0	8/06/17	Initial Issue	Ben Buckley			

Distribution Register					
Distribution Method	Custodian	Issued to			
Electronic	B. Buckley	Benviron Group Office			
Electronic					

Authorisation and Release						
Signature Name Date						
Author	Allale	Noriman Mak	8/6/2017			
Author	ber buckley	Benjamin Buckley	8/6/2017			

Executive Summary

Benviron Group carried out a geotechnical investigation at No 185 Fifth Avenue, Austral in May 2017 to assess the site surface and subsurface conditions in regard to the proposed residential development.

It is understood the proposed development involves demolition of all the existing structures in this site and the construction of a four 5-storeys residential building with a 2 level basement carpark adjoining Fifth Avenue in Austral. The investigation comprised drilling of four boreholes within accessible parts of the site. In general, the site is gently sloping from a southeast to a northwest direction across the site, which is at approximately RL+73.5m AHD at the southeast corner of the site adjoining Fifth Avenue, and at approximately RL+70.2m AHD at the northwestern corner of the site. The boreholes were drilled down to a depth of 9.7m (BH1), 8.9m (BH2), 7.3m (BH3) and 7.4m (BH4) below the existing ground level from an average level of RL+71.5m AHD. Rock coring was undertaken in two of the boreholes (BH1 and BH2) to investigate the bedrock stratigraphy commencing at approximately 7.6m (BH1) and 6.0m (BH2) below existing ground level at BH1, which translated to be at approximately RL +64.2 mAHD during the investigation.

This report presents and interprets the findings of this geotechnical investigation that was carried out to date. Based on the findings, geotechnical and assessment and recommendations are presented.

The proposed development is feasible based on the findings of this investigation subjected to the recommendations provided in this report.

Table of Contents

EXE(CUTIVE SUMMARY
1.0	INTRODUCTION
2.0	AVAILABLE INFORMATION
3.0	SITE LOCATION AND DESCRIPTION
4.0	PROPOSED DEVELOPMENT
5.0	REGIONAL GEOLOGY
6.0	FIELDWORK
7.0	FIELD WORK RESULTS
7.1	SUBSOIL CONDITIONS
7.2	GROUND WATER
8.0	DISCUSSIONS AND RECOMMENDATIONS
8.0 8.1	DISCUSSIONS AND RECOMMENDATIONS
8.1	GENERAL
8.1 8.2	GENERAL
8.1 8.2 8.3	GENERAL
8.1 8.2 8.3 8.4	GENERAL
8.1 8.2 8.3 8.4 8.5	GENERAL
8.1 8.2 8.3 8.4 8.5 8.6 9.0 LIMI	GENERAL10EXCAVATION CONDITIONS AND VIBRATION CONTROL10GROUNDWATER MANAGEMENT11TEMPORARY BATTER SLOPES11RETAINING STRUCTURES12FOUNDATIONS14

Appendix A: Figures

Appendix B: Engineering Logs

Appendix C: Core logs

Appendix D: Core Photographs.

1.0 INTRODUCTION

Benviron Group ('BG') was engaged to undertake a geotechnical investigation at 185 Fifth Avenue, Austral ('the site'). The purpose of this investigation is to assess the site's surface and subsurface conditions and to provide geotechnical recommendations for the design and construction of the proposed residential development in preparation on the submission for Development Approval

The proposed development involves demolition of all the existing structures and the construction a four 5-storeys residential buildings with a 2 level basement carpark. The proposed development is facing Fifth Avenue, Austral.

This report presents and interprets the findings of the geotechnical investigation that was carried out at the site on the 18-19 May 2017 as follows:

- Method of investigation,
- Site description, including surface and sub-surface conditions,
- Site plan, showing investigation locations and footprint of the proposed development,
- Groundwater conditions and management,
- Recommendations on the excavation conditions, temporary slope batters, and vibration considerations
- Provision of soil parameters for design of retaining systems, and
- Recommendations on footings and serviceability bearing pressures.

2.0 AVAILABLE INFORMATION

At the time of writing this report, a set of architectural Drawings prepared by C M Architects dated April 2017 with reference No. J6826 were provided to us as listed below:

- a101 Survey
- a102 Site Plan
- a103 Site Analysis
- a200 Basement 1
- a201 Basement 2

- a202 Ground Floor
- a203 Level 1
- a204 Level 2
- a205 Level 3
- a206 Level 4
- a207 Roof Level
- a208 Adaptable units
- a300 Elevations
- a301 Elevations
- a400 Sections
- a500 Shadow Diagrams 21 June (9am, 10 am, 11 am, + 12 pm)-.
- a501 Shadow Diagrams 21 Jun (1pm, 2pm. 3pm)
- a600 Solar and Cross Ventilation

3.0 SITE LOCATION AND DESCRIPTION

The site is in the suburb of Austral, approximately 50 Km west of the Sydney CBD (Figure 1). The site is predominantly rectangular in shape and bounded by neighboring buildings and structures in the north, east and west, and immediately adjacent to Fifth Avenue in the south (Figure 2). The site is gently sloping from the southeast corner adjoining Fifth Avenue towards a northwesterly direction. Along the southern site boundary adjoining Fifth Avenue, it is at approximately RL +73.5m AHD at the eastern boundary of the site and slopes westward and at the westernmost boundary this is at approximately RL +71.0m AHD.

4.0 PROPOSED DEVELOPMENT

The proposed development is four 5-storeys residential buildings (Buildings A, B, C and D) with 2 levels of basement carpark. The 2 level basement carpark is joined between Buildings A & B and between buildings C & D at basement 1 level. Buildings A & D are located on the higher eastern part of the site where the proposed vehicular entrance from the future road to the basement carparks are situated as shown in Figure 3. The lower Basement 2 carpark level (Basement 2) is at approximately RL+66.4m AHD for Buildings A & D and at approximately RL+65.6 m AHD for Buildings B & C (Figure 3). The proposed basement wall

has a minimum set-back of 6.0m from the northern and southern boundary, and a minimum set-back of 4.7m from the eastern and the western site boundary as shown in Figure 3.

5.0 REGIONAL GEOLOGY

Reference to the Penrith 1: 1:100,000 Geological Series Sheet 9029-9130 Edition 1, 1983, indicates the site to be underlain by Bringelly Shale of Middle Triassic Age Bringelly Shale is typically consisted of combination of shale, carbonaceous claystone, claystone, laminite and fine to medium grained sandstone.

6.0 FIELDWORK

Fieldwork for the geotechnical investigation was carried on the 18-19 May 2017 and supervised by a geotechnical engineer. This investigation was carried out from accessible parts of site and the fieldworks comprised the following works:

- A detailed walk-over inspection of the site and surrounding environment to capture any significant geological features.
- Drilling of four (4) boreholes, BH1, BH2, BH3 and BH4 using a 5 tonne truck-mounted drilling rig equipped with TC-bit attached to a solid flight auger and NMLC diamond rock corer. The boreholes were drilled down to a total depth of 9.7m (BH1), 8.9m (BH2), 7.3m (BH3) and 7.4m (BH4) below existing ground level.
- Standard Penetration Tests (SPT) was undertaken at regular intervals within the soil profile to assess the in-situ strength of subsoil properties.

The approximate locations of the investigation locations are shown in Figure 2 with respect to the current site layout, and in Figure 3 with respect to the future proposed basement footprints. A typical section of the proposed carpark basements and development above together with the investigation holes is shown in Figure 4. The Engineering Logs are presented in Appendix B, the Core logs are presented in Appendix C and the Core Photographs are presented in Appendix D.

7.0 FIELD WORK RESULTS

7.1 Subsoil Conditions

The site substrata at BH1 comprised 0.5m of fill, overlying a firm to stiff medium to high plasticity sandy silty CLAY to approximately 2.0m when a very stiff low to medium plasticity silty CLAY was present and continued to approximately 3.5m where an extremely weathered shale was encountered. Below this level, the greenish grey extremely weathered shale is interbedded with the light greyish extremely weathered shale continued to a depth of approximately 5.0m, when intruded by a light greyish extremely weather sandstone layer of approximately 2m thick before reverting to the greenish grey extremely weathered shale at approximately 7.0m below ground level. At 7.6m, the sandstone is predominantly a medium to high strength rock with closely spaced joints, which overlies a greenish grey medium to high shale with closely spaced joints at a depth of 8.7m. The shale is consistent with depth until this borehole is terminated at approximately 9.7m below existing ground level (approximately RL +60.5 mAHD).

The subsurface profile at BH2 is similar to BH1 comprised 0.4m of fill, overlying a firm to stiff medium to high plasticity sandy silty CLAY to approximately 2.0m when a very stiff low to medium plasticity silty CLAY was present and continued to approximately 3.5m where an extremely weathered shale was encountered. The greenish grey extremely weathered shale continued to a depth of approximately 5.3m, when intruded by a light greyish extremely weather sandstone layer was encountered and continued to a depth at approximately 6.0m below ground level. At 6.0m, the shale encountered is predominantly a very low to low strength rock with very closely spaced joints, and becoming a medium strength shale with closely spaced joints at a depth of 7.0m. The shale is consistent with depth until 8.5m, where a medium to high strength sandstone was encountered and continued until this borehole is terminated at approximately 8.9m below existing ground level (approximately RL +62.3 mAHD).

Similar to BH1 and BH2, BH3 profile comprised 0.4m of fill, overlying a firm to stiff medium to high plasticity sandy silty CLAY to approximately 2.0m when a very stiff low to medium plasticity silty CLAY was present and continued to approximately 3.2m where an extremely weathered shale was encountered. The greenish grey extremely weathered shale continued to a depth of approximately 5.0m, when intruded by a light greyish extremely weather sandstone layer of approximately 2m thick before reverting to the greenish grey extremely weathered shale at approximately 7.0m below ground level. At 7.0m below ground surface, the extremely weathered shale continued to exhibit similar characteristics and consistency until this borehole is terminated at approximately 7.3m below existing ground level (approximately RL +64.9m AHD).

Consistent with other boreholes, BH4 profile comprised 0.4m of fill, overlying a firm to stiff medium to high plasticity sandy silty CLAY to approximately 2.0m when a very stiff low to medium plasticity silty CLAY was present and continued to approximately 3.2m where an extremely weathered shale was encountered. The greenish grey extremely weathered shale continued to a depth of approximately 5.4m, when intruded by a light greyish extremely weather sandstone layer of approximately 1.6m thick before reverting to the greenish grey extremely weathered shale at approximately 7.0m below ground level. At 7.0m below ground surface, the extremely weathered shale continued to exhibit similar characteristics and consistency until this borehole is terminated at approximately 7.4m below existing ground level (approximately RL +64.2m AHD).

7.2 Ground Water

Groundwater or seepage was encountered at 6.0m below the existing ground level at BH1 during the investigation works. This infers the groundwater table is at approximately RL +64.2m AHD, which is below the lowest proposed basement B2 level for Building B and Building C which is designed at RL +65.6m AHD.

However, it should be noted groundwater levels may be subject to seasonal fluctuations, rainfall, prevailing weather conditions and also future developments of the areas and land forms.

8.0 DISCUSSIONS AND RECOMMENDATIONS

8.1 General

Observation at the boreholes indicate that the site subsurface profile is likely to comprise of fill overlying predominantly a medium to high plasticity firm to stiff silty clay, then a low plasticity stiff to hard silty clay, which overlies an extremely weathered shale, an extremely weathered sandstone, and gradually to a medium to high strength Shale/Sandstone at deeper depths.

8.2 Excavation Conditions and Vibration Control

Based on the available information, formation of the proposed basement excavations will involve up to approximately 6m excavation below the original ground surrounding the site. Therefore, excavation materials is likely to comprise fill, a firm to hard silty Clay layer with depths of up to about 3m followed by an extremely weathered shale to a depth of approximately 5.0m, where an extremely weathered sandstone is likely to be encountered.

Excavation of soils and extremely low to very low strength rocks, if encountered, can be using conventional earthmoving equipment such as backhoes or tracked excavators. However, the excavation of low to medium strength or stronger shale and sandstone may be achieved using rock breaking and saw cutting equipment.

The use of vibratory rock breaking hammer equipment is very common method of excavation works in hard bedrock. In this regard, it is essential to carry out saw cutting along the perimeter of the site using an appropriate excavator mounted rock saw or other approved alternatives prior to excavation to reduce transmission of vibrations to adjoining structures to acceptable levels. Induced vibrations in structures adjacent to the excavation should not exceed a peak particle velocity (PPV) of 10mm/sec for structures in good condition or 2mm/sec for heritage or poor-conditioned structures. We recommend

vibration monitoring is undertaken at critical locations such as along the road edge of Fifth Avenue and along the northern, eastern and western site boundaries next to neighbouring buildings in order to monitor the vibration levels throughout the period of rock excavation.

We also recommend that dilapidation surveys are carried out on all adjoining buildings, roads and civil structures so that an accurate record of the existing conditions of these elements are mapped prior to the commencement of excavation. These records shall be agreed by the respective owner in order to reduce the risk of future owner's dispute on subsequent potential damage claims.

8.3 Groundwater Management

Ground water seepage was observed and assessed to be approximately 6.0m below existing ground level (at approximately RL +64.2m AHD) during the investigation works. It should be noted groundwater conditions of a site might change with climate and development variations. With the excavation anticipated to be down to RL+65.6m AHD, based on the data observed from the investigation, it is likely the groundwater will be below the proposed bulk excavation level and groundwater management system can be nominal.

However, in view of the interbedded weathered sandstone and weathered shale subsoil conditions within the site, water can be trapped at higher levels within the more permeable weathered sandstone layers and may impact on the basement excavation works. Depending on the seepage rates, the encountered groundwater during excavation can be managed by a system of sump pumps or cut offs to ensure the water drawdown does not affect the neighbouring properties. It is recommended that a geotechnical engineer be engaged to review the groundwater monitoring system with respect to the chosen construction methodology for the foundation and basement works.

8.4 Temporary Batter Slopes

With the proposed basement car park level designed to have 4.7m to 6m set-backs from the site boundaries, it is feasible to adopt and use temporary batter slopes during construction

of the basement. The safe temporary batters are recommended as presented in Table 1.

Materials	Temporary (Horizontal: Vertical)		
Fill	2.5:1.0		
Firm/Stiff Clay	2.0:1.0		
Very Stiff/Hard Clay or Extremely	1.5:1.0		
Weathered Shale /Sandstone	1.3.1.0		
Extremely/Highly Weathered	1.0:1.0		
Shale/Sandstone	1.0.1.0		

Table 1: Minimum temporary batter slopes

Temporary surface protection against erosion may be provided by covering the batter with plastic sheeting, and these should be applied for a limited time only and inspected by Geotechnical Engineers after significant events. It should be noted however that the plastic sheeting should extend at least 1.5m behind the crest of the cut face or at least up to the common site boundaries.

8.5 Retaining Structures

The proposed basement cut faces should be supported temporary during construction and in long term using appropriate retaining structures. These retaining structures should be designed to withstand the applied lateral pressures of the soil and rock strata, the existing surcharges in their zone of influence; including existing structures, and construction related activities, and water pressures if exists.

In areas where there is no building structure in close proximity to the excavation, and assuming some wall movement is acceptable, a soldier pile solution with shotcrete infill panels can be considered. In areas where there is a potential risk of damage to nearby structures or buildings (which are sensitive to any ground movements), it is considered a contiguous pile wall system is more appropriate for the basement wall prior to bulk excavation works. Subject to a qualified geotechnical engineer inspection and approval, shotcrete infill panels may be omitted between soldier/contiguous piles where the exposed bedrock is less likely to be affected by weathering/erosion and is classified as Class III or better. Suitable drainage system should be considered behind the retaining walls in the form the prefabricated strip drains with nominal spacing of 1.5 m c/c and/or peepholes with suitable spacing and details as specified by designer.

The pressure distribution on cantilever retaining structures may be assumed to be triangular and estimated as follows:

 $p_h = \gamma kH + qk$

Where,

 p_h = Horizontal pressure (kN/m²)

 γ = Wet density (kN/m³)

 $k = Coefficient of earth pressure (k_a or k_o)$

H = Retained height (m)

q = Surcharge pressure behind retaining wall (kN/m^2)

Rectangular or trapezoidal pressure distribution may be considered for tied-back retaining system, as recommended in related standards and technical literature.

For the design of flexible retaining structures, where some lateral movement is acceptable, an active earth pressure coefficient is recommended. Should it be critical to limit the horizontal deformation of a retaining structure, use of an earth pressure coefficient at rest should be considered. Recommended parameters for the design of retaining structures are presented in the following Table 2.

Materials	Unit Weight (kN/m³)	Active Earth Pressure coefficient (K _a)	At Rest Earth Pressure Coefficient (K _o)	Passive Earth Pressure coefficient (K _p) or Pressure	Youngs Modulus E (MPa)
Fill	17	0.5	0.63	ignore	10
Residual Soil - Firm to very stiff silty clay	18	0.4	0.55	ignore	20
Residual Soil - Vert stiff to hard silty Clay	18	0.4	0.50	ignore	22

Extremely Weathered	19	0.35	0.45	250	25	
Shale/Sandstone	19	0.35	0.45	250	35	
Extremely /Highly Weathered	20	0.30	0.40	275	45	
Shale/Sandstone (Class V/ IV)	20	0.50	0.40	275	40	

The above coefficients assume that ground level behind the retaining structures is horizontal and the retained material is effectively drained. It should be noted that hydrostatic pressures due to ground water table (if present) and surcharge due to nearby structures (within the influence zone) should also be taken into the account in the design of the retaining structures. This is particularly the case for the retaining walls located immediately adjacent to the neighboring buildings.

8.6 Foundations

The foundation level of the proposed development is anticipated to be within the Class III Shale /Class IV Sandstone or better stratum. It is therefore considered that foundations footings founded on this material can be designed for a serviceability end bearing capacity of 1500 kPa with a minimum socket length of 0.5 m into foundation bedrock or better. Based on the information obtained to date, it is likely that this stratum will be at approximately 7m below existing ground level, or approximately 1-2m below the basement B2 level. It is recommended that all footings are to be founded on the same stratum to minimise and avoid potential future differential settlement.

We consider higher bearing capacities may be justified for footings subject to confirmation of additional drilling below the founding level and rock strength testing.

It is recommended that a further exploratory drilling be carried out into the foundation material once excavation to the final basement level has been reached. The footing inspection and assessment requirement can be referred to the guidelines provided in Pells et al.(Reference 3).

A qualified geotechnical engineer should inspect the footing excavations to confirm appropriate founding materials, and to ensure the serviceability bearing pressures could be met. Footing excavations should be cleaned and wet and debris should be removed prior to the concrete placement.

9.0 CONCLUSIONS

This report presents the findings of the BG geotechnical investigation and recommendations for the proposed residential development at 185 Fifth Avenue, Austral, NSW. It considers that the proposed development is feasible in this site if the recommendations provided in this report are considered in design and construction of this development.

For and on behalf of

Benviron Group

Allale

Noriman Mak Geotechnical Engineer FIEAust., RPE (Civ, Geo), NPER (Civ, Geo) **Reviewed by**

ber buckley

Ben Buckley

LIMITATIONS

The assessment of the sub-surface profile within the proposed development area and the recommendations presented in this report are based on limited information available to date.

The recommendations and advice presented in this report on soil and rock condition is considered to be indicative only as only very limited areas were assessed on site to date. Site inspection by a consulting Geotechnical Engineer or Engineering Geologist are to be undertake when further investigation works are to be carried out to confirm the condition of founding materials in which this geotechnical assessment recommends.

Anecdotal evidence and Information provided by client is assumed to be relevant and to the best of knowledge be appropriate for its interpretation.

There is a possibility that the actual geotechnical and groundwater conditions across the site could differ from the inferred geotechnical assumptions and derivations on which our recommendations are presented in this report.

REFERENCES

- 1. Australian Standard AS1726-1993 'Geotechnical Site Investigation'; and
- Pells, P.J.N, Mostyn, E and Walker, B F Foundations on Sandstone and Shale in the Sydney Region, Australian Geomechanics Journal, Dec 1998
- Pells, P.J.N, Douglas D.J, Rodway, B, Thorne C, McManon B.K Design Loadings for Foundations on Shale and Sandstone in the Sydney Region. Australian Geomechanics Journal, 1978

Кеу			drawn RL	Site Features and Borehole Location Plan
Site Boundary		Benviron &	FIGURE 2	GM Architects
Geotechnical Investigation holes	•	simple sustainable solutions	# doL	185 Fifth Avenue, Austral
			G217	

an

Job No:	G217
Hole No:	BH1
Sheet	1 of 3

	Client: GM Architect Test Location: Refer to Figure 2, 3 & 4									
									Truck Mounted Drill Rig	
	ject: ject Lo	ontion	.			Geotechnical Investigation 185 Fifth Avenue, Austral	Date:			
FIO	Ject Lo	catioi	1.			165 Fifth Avenue, Austral			approx RL70.2 mAHD	RL
Groundwater	Samples/ Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
		0.1				Fill: Silty CLAY, low to medium plasticity, brown	М	S	Low TC bit resistance	0.1
		0.2 0.3 0.4 0.5				with grass roots				0.2 0.3 0.4 0.5
	SPT 2,4,6 N=10	0.6 0.7 0.8 0.9				Silty CLAY, medium to high plasticity, brown/orange	M	St St	Low TC bit resistance	0.6 0.7 0.8 0.9
	1.0 becoming light brown/grey from about 1.0m 1.1 1.2 1.3 1.4 1.5 1.6				becoming light brown/grey from about 1.0m				1.0 1.1 1.2 1.3 1.4 1.5 1.6	
	SPT 4,7,8 N=15	1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4				Silty CLAY, low to medium plasticity, orange/grey	м	- <u>-</u> -	Low TC bit resistance	1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
		2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4				Shale fragements noted between 3.0m and 3.5m	М	VSt to H	Low to Medium TC bit resistance	2.5 2.6 2.7 2.8 3.0 3.1 3.2 3.3 3.4
E 1/17	anata-	3.5				Continue in Sheet 2 of 3		<u> </u>	<u> </u>	3.5
	Sof Firr Stif	y Soft t n f y Stiff	:			Density IndexSamplesVL Very LooseBBulk SampleLLooseDDisturbed SampleMDMedium DenseU50Undisturbed SampleDDense(50mm diam.)VDVery DenseNS.P.T. Value		Moistur D Dry M Mois W Wet Wp Plas WI Liqu	st : tic Limit	

Job No: G217 Hole No: BH1 Sheet 2 of 3

		LN.		JL	.00	OF DRILLED BOREHOLE				
-	ent:					GM Architect			on: Refer to Figure 2, 3 & 4	
	ject:					Geotechnical Investigation			Truck Mounted Drill Rig	
Pro	ject Lo	catic	n:			185 Fifth Avenue, Austral	Date:		18.05.2017 Logged by:	RL
							Surfa	ce Leve	el: approx RL70.2 mAHD	_
Groundwater	Samples/ Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition		Additional Comments	Depth (m)
	SPT	3.6				SHALE, extremely weathered, greenish grey	М	Н	Medium TC bit resistance	3.6
	10,17,22 N=39	3.7 3.8								3.7 3.8
		3.9								3.9
		4.0								4.0
		4.1								4.1
		4.2								4.2
		4.3								4.3
		4.4								4.4
		4.5								4.5
		4.6 4.7								4.6 4.7
		4.7								4.7
		4.9								4.9
		5.0				becoming grey from around 5.0m	D	н		5.0
	SPT NA,NA,NA	5.1								5.1
	N>50	5.2								5.2
		5.3								5.3
		5.4								5.4
		5.5								5.5
		5.6								5.6
		5.7								5.7
		5.8								5.8
		5.9							Seepage@ appro 6.0m BGL	5.9
	Δ	6.0 6.1							occpage applo 0.0111 DGL	6.0 6.1
		6.2								6.2
		6.3								6.3
		6.4								6.4
		6.5								6.5
		6.6								6.6
		6.7								6.7
		6.8								6.8
		6.9								6.9
		7.0				Continue in Sheet 3 of 3				7.0
	lanatory		es:			Donsity Indox Samples		Moist	uro	
vs	<u>sistency</u> Ver	<u>'</u> y Sof	ŧ			Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dr		
s	Sof	-	·			L Loose D Disturbed Sample		M M		
F	Firr					MD Medium Dense U50 Undisturbed Sample		w w		
St	Stif					D Dense (50mm diam.)			astic Limit	
VSt		y Stil	ff			VD Very Dense N S.P.T. Value			quid Limit	
н	Har	· .								_

Job No:	G217
Hole No:	BH1
Sheet	3 of 3

					JL		OF DRILLED BOREHOLE					
_	ent:						GM Architect				n: Refer to Figure 2, 3 & 4	
	ject						Geotechnical Investiga				Truck Mounted Drill Rig	
Pro	ject	: Lo	catio	on:			185 Fifth Avenue, Au	stral	Date:		18.05.2017 Logged by:	RL
									Surfac	ce Leve	el: approx RL70.2 mAHD	
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description		Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
			7.1				SHALE, extremely weathered, greenish g	rey	М	Н	Medium to high TC bit resistance	7.1
		_	7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.3 8.4 8.5 8.6 8.7			-	Start NMLC Coring At 7	.6m			TC Bit refusal at 7.6 m	7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7
			8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.8 9.9									8.7 8.8 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9
			$\left - \right $									$\left - \right $
Exp	lana	itorv	Not	es:	1					l		
		ency					Density Index Samples			Moist	ıre	
VS			y Sof	t			VL Very Loose B Bulk Sam	ple		D Dr		
s		Soft					L Loose D Disturbed			M M		
F		Firn					MD Medium Dense U50 Undistu			ww		
St		Stif					D Dense (50mm c				astic Limit	
VSt			y Stif	ff			VD Very Dense N S.P.T. Va				juid Limit	
н		Har					-,	-			· ·	

Job No:	G217
Hole No:	BH2
Sheet	1 of 2

ent:									
					GM Architect			Refer to Figure 2, 3 & 4	
							lethod:		
ject Lo	catio	on:			185 Fifth Avenue, Austral		<u>a Lavalı</u>		RL
						Surfac	e Levei:	approx RL71.2 mAHD	
Samples/ Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
	0.1				Fill: Silty CLAY, low to medium plasticity, brown	М	S	Low TC bit resistance	0.1
	0.2 0.3 0.4				with grass roots				0.2 0.3 0.4
SPT 3,4,5 N>9	0.0				Silty CLAY, medium to high plasticity, brown/orange	м	St	Low TC bit resistance	0.5 0.6 0.7 0.8
	0.9 1.0 1.1				becoming light brown/grey from about 1.0m				0.9 1.0 1.1
	1.2 1.3 1.4 1.5								1.2 1.3 1.4 1.5
	1.6 1.7 1.8 1.9								1.6 1.7 1.8 1.9
SPT 14,6,9 N=15	2.1 2.2 2.3		-		Silty CLAY, low to medium plasticity, orange/grey	— — - М	VSt	Low TC bit resistance	2.0 2.1 2.2 2.3
	2.5 2.6 2.7								2.4 2.5 2.6 2.7 2.8
	2.9 3.0 3.1 3.2				Shale fragements noted between 3.0m and 3.5m	м	VSt to H	Low to Medium TC bit resistance	2.9 3.0 3.1 3.2
	3.4 3.5				Continue in Sheet 2 of 3				3.3 3.4 3.5
		25.			Density Index Samples		Moistur	Δ	
		ft							
	-	i t					-		
Ve	ry Sti	ff					-		
	Set Takes Set Takes N>9 Set Takes N>9 Set Takes N>9 Set Takes N=15 Set Takes N=15	اوفلا الالا الله العام الحالي العام الحالي العام الحالي العام الحالي العام الحالي العام الحالي العام الحالي الحالي الحالي	Sept 3,4,5 0.6 0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.4 0.5 0.4 0.5 0.6 0.7 0.8 0.9 0.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.6 1.7 1.8 1.9 2.0 1.4 1.5 1.6 1.7 1.8 1.9 2.2 2.3 2.4 2.5 2.6 2.7 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 anatory Notes: Soft Soft Firm Stiff Very Soft Soft Firm Stiff Very Stiff Very Stiff	sect Location:	ject Location:	sect Location: 185 Fifth Avenue, Austral /sect Location: 185 Fifth Avenue, Austral /sect Location: 9 (1) 9 (2) 9 (2) 9 (2) 0.1 (2) 0.4 (2) 0.4 (2) 0.4 (2) 0.4 (2) 0.4 (3) 0.4 (4) 0.5 (5) 5 (7) 0.8 (6) 0.4 (1) 1.2 (1) 1.2 (1) 1.2 (1) 1.2 (1) 1.2 (1) 1.2 (1) 1.2 (1) 1.2 (1) 1.2 (1) 1.2 (2) 2.2 (2) 2.2 (2) 2.2 (2) 2.2 (2) 2.2 (2) 2.2 (2) 2.2 (2)	Sect Location: 185 Fifth Avenue, Austral Date: Variation: 01 01 01 01 03 04 04 04 04 04 05 07 08 04 04 05 07 08 07 04 05 07 08 07 05 07 08 07 08 04 07 08 07 08 05 07 08 07 08 06 07 08 07 08 07 08 07 08 07 08 07 08 07 08 08 07 08 07 08 09 07 08 08 08 111 12 08 08 08 113 14 16 17 18 120 13 14 16 17 131 14 16 17 18 141 15 17 18 18 120 21 18 18 18 121 21 19 19 108 122	Stifty Location: 185 Fifth Avenue, Austral Date: Surface Level: 185 Fifth Avenue, Austral Date: 185 Fifth Avenue, Austral Description 0.1 Fill: Silty CLAY, Iow to medium plasticity, brown M 10 10 Date: 11 Date: Silty CLAY, medium to high plasticity, brown/orange M 18 Silty CLAY, Iow to medium plasticity, orange/grey M VSt 19 Silty CLAY, Iow to medium plasticity, orange/grey M VSt 19 Silty CLAY, Iow to medium plasticity, orange/grey M VSt 19 Silty CLAY, Iow to medium plasticity, orange/grey M VSt 19 Silty CLAY, Iow to medium plasticity, orange/grey M VSt 10	Sect Location: 185 Fifth Avenue, Austral Date: 18.05.2017. Logged by: Surface Level: approx RL71.2 mAHD Surface Level: approx RL71.2 mAHD Y V V V V M S Additional Comments Description M S Low TC bit resistance 03 V Silty CLAY, low to medium plasticity, brown with grass roots M S Low TC bit resistance 04 S Silty CLAY, medium to high plasticity, brown/orange M S Low TC bit resistance 05 Silty CLAY, medium to high plasticity, brown/orange M S Low TC bit resistance 13 Silty CLAY, medium to high plasticity, orange/grey M VSt Low TC bit resistance 14 S Silty CLAY, low to medium plasticity, orange/grey M VSt Low TC bit resistance 13 Shale fragements noted between 3.0m and 3.5m M VSt to H Low to Medium TC bit resistance 23 Shale fragements noted between 3.0m and 3.5m M VSt to H Low to Medium TC bit resistance 34 Shale fragements noted between 3.0m and 3.5m M VSt to H Low to Medium TC bit resistance 35 Continue in Sheet 2 of 3 D Disturbed Sample M <td< td=""></td<>

Job No: G217 Hole No: BH2 Sheet 2 of 2

				JL		OF DRILLED BOREHOLE	<u> </u>			
-	ent:					GM Architect			on: Refer to Figure 2, 3 & 4	
	ject:					Geotechnical Investigation			Truck Mounted Drill Rig	
Pro	ject Lo	catio	n:			185 Fifth Avenue, Austral	Date		18.05.2017 Logged by:	RL
		<u> </u>					Surfa	ace Lev	el: approx RL71.2 mAHD	
Groundwater	Samples/ Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture	Consistency/ Rel. Density	Additional Comments	Depth (m)
	SPT	3.6				SHALE, extremely weathered, greenish grey	М	Н	Medium TC bit resistance	3.6
	9,14,23 N=37	3.7								3.7
		3.8								3.8
		3.9								3.9
		4.0								4.0
		4.1								4.1
		4.2								4.2
		4.3								4.3
		4.4								4.4
		4.5								4.5
		4.6								4.6
		4.7								4.7
		4.8								4.8
		4.9								4.9
		5.0								5.0
		5.1								5.1
		5.2								5.2
		5.3				becoming any from around E Em				5.3
		5.4				becoming grey from around 5.5m				5.4
		5.5 5.6								5.5 5.6
		5.7								5.7
		5.8								5.8
		5.9								5.9
		6.0								6.0
	_	6.1	-			Start NMLC Coring At 6.0m			TC Bit refusal at 6.0m	6.1
		6.2				Ū.				6.2
		6.3								6.3
		6.4								6.4
		6.5								6.5
		6.6								6.6
		6.7								6.7
		6.8								6.8
		6.9								6.9
		7.0				Continue in Sheet 3 of 3				7.0
	lanatory		es:							
	sistency	-				Density Index Samples		Moist		
VS		y Sof	t			VL Very Loose B Bulk Sample		D Dr		
S	Sof					L Loose D Disturbed Sample		MM		
F	Firr					MD Medium Dense U50 Undisturbed Sample		W W		
St	Stif		f			D Dense (50mm diam.)		-	astic Limit	
VSt		y Stif	ſ			VDVery DenseNS.P.T. Value		VVI LI	quid Limit	
Н	Hai	a								_

Job No:	G217
Hole No:	BH3
Sheet	1 of 3

Clie							GM Architect	Test L	ocation	Refer to Figure 2, 3 & 4	
-	ject:						Geotechnical Investigation			Truck Mounted Drill Rig	
	ject		catio	n:			185 Fifth Avenue, Austral	Date:		19.05.2017 Logged by:	RL
	5								e Level:	approx RL71.2 mAHD	
Groundwater	Samples/	Field Tests		Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
			0.1				Fill: Silty CLAY, low to medium plasticity, brown	М	S	Low TC bit resistance	0.1
			0.2 0.3 0.4	-			with grass roots	— <u>—</u> —	– <u>–</u> –	Low TC bit resistance	0.2 0.3 0.4 0.5
			0.5 0.6 0.7 0.8 0.9 1.0				becoming light brown/grey from about 1.0m	IVI	31	Low TC bit resistance	0.6 0.7 0.8 0.9
	SP 5,6 N=1	i,9	1.1 1.2 1.3 1.4								1.0 1.1 1.2 1.3 1.4
			1.5 1.6 1.7 1.8 1.9 2.0								1.5 1.6 1.7 1.8 1.9 2.0
	SP	·T	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0				becoming low to medium plasticity, orange/grey	М	VSt	Low TC bit resistance	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
	12,25 N>5	5,NA	3.1 3.2 3.3 3.4				SHALE, extremely weathered, greenish grey	м		Medium TC bit resistance	3.1 3.2 3.3 3.4
			3.5				Continue in Sheet 2 of 3				3.5
		verv Verv Soft Firn Stiff	y Sof	ť			Density IndexSamplesVLVery LooseBBulk SampleLLooseDDisturbed SampleMDMedium DenseU50Undisturbed SampleDDense(50mm diam.)VDVery DenseNS.P.T. Value		-	st	

Job No: G217 Hole No: BH3 Sheet 2 of 3

	ent:		11 11	JL		OF DRILLED BOREHOLE	Tact	acatio	no. Defer to Figure 2, 2, 9, 4	
	ject:				_	GM Architect Geotechnical Investigation			n: Refer to Figure 2, 3 & 4 Truck Mounted Drill Rig	
	ject Lo	ocatio	n.		_	185 Fifth Avenue, Austral	Date:		19.05.2017 Logged by:	RL
1 10		Cath	л .			105 Hitli Avenue, Austral			el: approx RL70.2 mAHD	NL.
Groundwater	Samples/ Field Tests	😕 Depth (m)	Graphic Log	Unified	Classification	Description SHALE, extremely weathered, greenish grey	➡ Moisture Condition	± Consistency/ Rel. Density	Additional Comments Medium TC bit resistance	9.6 Bepth (m)
	SPT NANANA N>50	3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0				becoming grey from around 5.0m	D	н		3.8 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0
	lanator sistenc		es:			Density Index Samples		Moistu	ure	
VS		ry So	ft			VL Very Loose B Bulk Sample		D Dr		
s	So	-				L Loose D Disturbed Sample		M M		
F	Fir	m				MD Medium Dense U50 Undisturbed Sample		w w	et	
St	Sti	ff				Dense (50mm diam.)		Wp Pla	astic Limit	
VSt H		ry Sti rd	ff			VD Very Dense N S.P.T. Value			quid Limit	
St	Sti Ve	ff	ff			D Dense (50mm diam.)		Wp Pla	astic Limit	

Job No: G217 Hole No: BH3 Sheet 3 of 3

					JL	.00	OF DRILLED BC							
Clie									chitect				on: Refer to Figure 2, 3 & 4	
	ject								Investigatio				Truck Mounted Drill Rig	
Pro	ject	Loc	catic	n:			185 Fi	fth Ave	enue, Austra	al	Date:		19.05.2017 Logged by:	RL
											Surfa	ce Lev	el: approx RL70.2 mAHD	_
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification		Descr	iption		Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
			7.1				SHALE, extremely weath	ered, g	grey		М		High TC bit resistance	7.1
			7.2											7.2
			7.3											7.3
			7.4											7.4
			7.5				TCE	Bit refu	sal at 7.4 m					7.5
			7.6											7.6
			7.7											7.7
			7.8											7.8
			7.9											7.9
			8.0											8.0
			8.1 8.2											8.1 8.2
			8.3											8.3
			8.4											8.4
			8.5											8.5
			8.6											8.6
			8.7											8.7
			8.8											8.8
			8.9											8.9
			9.0											9.0
			9.1											9.1
			9.2											9.2
			9.3											9.3
			9.4 9.5											9.4 9.5
			9.6											9.6
			9.7											9.7
			9.8											9.8
			9.9											9.9
														Щ
														\square
	lana siste		Not	es:			Donsity Index	C ~*	nnloc			Moist		
VS			y Sof	ŧ			<u>Density Index</u> VL Very Loose		<u>nples</u> Bulk Sample			Moist D Dr		
s		Soft					L Loose	D	Disturbed Sa			M M		
F		Firm					MD Medium Dense		Undisturbe			w w		
St		Stiff					D Dense		(50mm dian				astic Limit	
VSt			y Stil	ff			VD Very Dense	Ν	S.P.T. Value				quid Limit	
н		Har												

Job No:	G217
Hole No:	BH4
Sheet	1 of 3

Clie	ent:				-		GM Architect	Test L	ocation.	Refer to Figure 2, 3 & 4	
Pro							Geotechnical Investigation			Truck Mounted Drill Rig	
			catio	n:			185 Fifth Avenue, Austral	Date:		19.05.2017 Logged by:	RL
	J						,		e Level:	approx RL71.2 mAHD	
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
			0.1				Fill: Silty CLAY, low to medium plasticity, brown	М	S	Low TC bit resistance	0.1
			0.2 0.3 0.4 0.5 0.6	_			with grass roots	– <u>–</u> – M	- <u>-</u> -		0.2 0.3 0.4 0.5 0.6
			0.7 0.8 0.9 1.0 1.1 1.2 1.3				becoming light brown/grey from about 1.0m				0.7 0.8 0.9 1.0 1.1 1.2 1.3
			1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7				becoming low to medium plasticity, orange/grey	м	VSt	Low TC bit resistance	1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
	11,1	PT 19,23 =41	2.8 2.9 3.0 3.1 3.2 3.3 3.4	-			SHALE, extremely weathered, greenish grey	– – – – M		— — — — — — — — — — — — — — — — — — —	2.8 2.9 3.0 3.1 3.2 3.3 3.4
			3.5				Continue in Sheet 2 of 3				3.5
-	isiste	ency Ver Soft Firn Stift	Noto y Sof	t			Density IndexSamplesVLVery LooseBBulk SampleLLooseDDisturbed SampleMDMedium DenseU50Undisturbed SampleDDense(50mm diam.)VDVery DenseNS.P.T. Value		Moistur D Dry M Moi W Wet Wp Plas WI Liqu	st t stic Limit	

Job No: G217 Hole No: BH4 Sheet 2 of 3

-	ent:					GM Architect	Tact	ocatio	n Defer to Figure 2, 2, 9, 4					
	ject:						Test Location: Refer to Figure 2, 3 & 4 Test Methor Truck Mounted Drill Rig							
	ject. ject L	ocat	ion			Geotechnical Investigation 185 Fifth Avenue, Austral	Date: 19.05.2017 Logged by: RL							
110	Jeer L	ocai	1011.			105 mill Avenue, Austral			Level: approx RL70.2 mAHD					
Groundwater	Samples/ Eiold Tocts	Trend Tests Depth (m)	5	Unified Classification	_	Description SHALE, extremely weathered, greenish grey	R Moisture Condition	Consistency/ Rel. Density	Additional Comments Medium TC bit resistance	3.6 3.7				
	SPT 3,na,na N>	3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	$\begin{array}{c} 3\\ 3\\ \hline \\ 9\\ \hline 9\\ \hline \\ 9\\ \hline 9\\ \hline$			becoming grey from around 5.4m Continue in Sheet 3 of 3	D	Н		3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0				
	lanato sisten		otes:			Density Index Samples		Moistu	Ire					
vs		<u>cy</u> ery S	oft			VL Very Loose B Bulk Sample		D Dr						
s		oft	511			L Loose D Disturbed Sample		M M						
F		rm				MD Medium Dense US0 Undisturbed Sample		W W						
' St		:iff				D Dense (50mm diam.)			astic Limit					
VSt		ery S	tiff			VD Very Dense N S.P.T. Value			quid Limit					
H		ard								_				

Job No: G217 Hole No: BH4 Sheet 3 of 3

	ENGINEERING LOG OF DRILLED BOREHOLE Client: GM Architect Test Location: Refer to Figure 2, 3 & 4																	
-												Test Location: Refer to Figure 2, 3 & 4						
	ject								Investigat		Test Methor Truck Mounted Drill Rig							
Pro	ject	Loc	catic	on:			185 Fit	th Ave	enue, Aust	ral	Date:	19.05.2017 Logged by:	RL					
											Surfa	ce Lev	el: approx RL70.2 mAHD	_				
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification		Descr	iption		Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)				
			7.1				SHALE, extremely weath	ered, g	grey		М	н	High TC bit resistance	7.1				
			7.2											7.2				
			7.3											7.3				
			7.4		_						. L			7.4				
			7.5				TC B	it refu	sal at 7.4 m					7.5				
			7.6											7.6				
			7.7											7.7				
			7.8											7.8				
			7.9											7.9				
			8.0											8.0				
			8.1											8.1				
			8.2 8.3											8.2 8.3				
			8.4											8.4				
			8.5											8.5				
			8.6											8.6				
			8.7											8.7				
			8.8											8.8				
			8.9											8.9				
			9.0											9.0				
			9.1											9.1				
			9.2											9.2				
			9.3											9.3				
			9.4											9.4				
			9.5											9.5				
			9.6											9.6				
			9.7											9.7				
			9.8 9.9											9.8 9.9				
			9.9											9.9				
Ехр	lanat	tory	Not	es:														
Con	siste	ency					Density Index		nples			Moist	ure					
vs			y Sof	ft			VL Very Loose	В	Bulk Samp			D Dr	y					
S		Soft					L Loose	D	Disturbed			M M						
F		Firm					MD Medium Dense	U50		bed Sample		w w						
St		Stiff					D Dense		(50mm dia				astic Limit					
VSt			y Stil	ff			VD Very Dense	Ν	S.P.T. Valu	ue		WI Lic	quid Limit					
Н		Har	d															

	B		viro										Job. No G217 Hole No: BH1 Sheet: 1 of 1		
			grot le sustainable												
E	١G	iIN	EER	ING	LOG OF CORED HOLE								Driller: BG		
	ent:				GM Aechitect								ed:18.05.2017		
	ojec				Proposed Residential Development					le Cor					
Pro	ojeci	t Lo	cation:		185 Fifth Avenue, Austral					pervis ecked		RL NM			
Dri	II M	ode	l: Drill	ina Ri	g (Han-Jin)	Slop	e	90		CONCU			urface: Existing		
			e / Ler	-		Bear						tum	-		
Dr	illing	g In	format	ion	Rock Substance								Rock Mass Defects		
Method	wrethod Case - Lift Groundwater Samples / Field Tests Depth (m)				Substance Description	Weathering	Weathering EL VL Estimated M Strength					300 1000 Spacing	Defect Description		
N N N L C	0	O	<u>о</u> ш	7.0 7.1 7.2 7.3 7.4 7.5	Rock coring starts at 7.4m					Is	30	100	Belect Description □ 7.0 7.1 7.2 7.3 7.4 7.5		
				7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.8 8.9	SANDSTONE, whittish grey, very closely spaced closely spaced, medium to high strength Shale, grey, very closely spaced to closely space medium to high strength	/SW							7.82 Clean Joints 7.6 7.87 Clean Joints 7.7 7.96 Clean Joints 7.8 7.9 8.03,8.08 Clean Joints 8.0 8.10,8.15 Clean Joints 8.1 8.20 Clean Joints 8.2 8.32,8.34 Clean Joints 8.3 8.49 Clean Joints 8.4 8.52 Clean Joints 8.5 8.60 Clean Joints 8.6 8.74 Clean Joints 8.8 8.93 Clean Joints 8.9		
				9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	BH1 Terminated at 9.7m								9.05,9.06 Clean Joints 9.0 9.12,9.18 Clean Joints 9.1 9.25-9.27 Clay Seam 9.2 9.31-9.37 Fracture zone 9.3 9.42,9.47 Clean Joints 9.4 9.50-9.54 Fracture zone 9.5 9.59 Clean Joints 9.6 9.7 9.8 9.9 9.9		
Kev	- Me	etho	1		Case - lift	Weat	nerin	g				St	rength Is (50) MPa		
Key - Method AS Auger Screwing AD Auger Drilling R Roller / Tricone W Washbore NMLC NMLC Core Drill NQ,HQ Wireline Core Dr					Casing used Barrel withdrawn water level date shown Water inflow Partial drilling water loss Complete drilling water loss	Fr SW DW HW EW FZ CS	FrFreshESWSlightly weatheredVIDWDistinctly weatheredLHWHighly weatheredMEWExtremely weatheredHFZFracture ZoneVI					EL VL L M H VH	Extremely Low < 0.03 Very Low 0.03 - 0.1 Low 0.1 - 0.3 Medium 0.3 - 1.0		

													Job. No G217		
)	•										Hole No: BH2		
	B		nvir gro		5								Sheet: 1 of 1		
			le sustainabl		3										
E	NG	iIN	IEEF	RIN	ΞI	LOG OF CORED HOLE							Driller: BG		
Cli	ent:					GM Aechitect			H	ole Corr	mer	ced	: 18.05.2017		
	ojec					Proposed Residential Development			-	ole Com			19.05.2017	_	
Pro	ojec	t Lc	catior	:		185 Fifth Avenue, Austral				upervise			RL	4	
		مام		in a F):~		Clara	a. 00 ⁰	-	hecked		<u> </u>	NM	_	
			be / Le	-	-	(Han-Jin) MLC	Bear	e: 90° ing: -					rface: Existing • approx +71.2 m AHD		
			forma		. 111	Rock Substance	Dear	ing				um.	Rock Mass Defects		
					Π			σ				D		1	
	Ψ	Groundwater	Samples / Field Tests	Ê	Graphic Log		Weathering	Estimated	Strength	MPa	Defect	Spacing		ک	
por	e	pur	ple: I Te	ц Ц	hic		the	Esti	Stre		ă	м М		th (r	
Method	Case - Lift	Brou	Samples / Field Test	Depth (m)	Brap	Substance Description	Vea	┙┙고]	s(50)	00100	3000 3000	Defect Description	Depth (m)	
1		0	0, 11	6.0	0	Rock coring starts at 6.0m				>		$\frac{n}{n}$	6.07 Clean Joints	6.0	
Ν				6.1		Shale, grey, very closely spaced to closely spaced,							6.29 Clean Joints	6.1	
M				6.2		low to medium strength	20.00						6.32 Clean Joints	6.2	
L C				6.3			XW /DW							6.3	
Ľ				6.4 6.5									6.54 Clean Joints	6.4 6.5	
				6.6									6.66 Clean Joints	6.6	
				6.7									6.71,6.76,6.79 Clean Joints	6.7	
				6.8									6.84,6.87 Clean Joints	6.8	
				6.9 7.0		Shale, greenish grey, very closely spaced to		┼╀╉	╆╋			╂╋	7.0-7.08 Fracture Zone	6.9 7.0	
				7.0		closely spaced, medium to high strength							7.1 Clean Joints	7.0	
				7.2									7.23-7.30 Fracture Zone	7.2	
				7.3									7.44 Clean Joints	7.3	
				7.4									7.57 Clean Joints	7.4	
				7.5 7.6									7.67 Clean Joints 7.77 Clean Joints	7.5 7.6	
				7.0									7.86 Clean Joints	7.0	
				7.8										7.8	
				7.9										7.9	
				8.0									8.15 Clean Joints	8.0	
				8.1 8.2									8.28 Clean Joints	8.1 8.2	
				8.3										8.3	
				8.4										8.4	
				8.5								1		8.5	
				8.6		SANDSTONE, whittish grey, very closely spaced to							8.52 Clean Joints	8.6	
				8.7 8.8		closely spaced, medium to high strength							8.63 Clean Joints 8.73 Clean Joints	8.7 8.8	
				8.9									8.90 Clean Joints	8.9	
				9.0										9.0	
				9.1		BH2 Terminated at 9 m			IT			$ \top$		9.1	
				9.2										9.2	
				9.3 9.4										9.3 9.4	
				9.4 9.5										9.5	
Key	/ - Me	etho	d			Case - lift	Weath	nering				Stre	rength Is (50) MPa		
AS		Aug	er Scre	wing		Casing used	Fr	Fres					5	< 0.03	
AD R			er Drilli er / Tric			Barrel withdrawn water level date shown	SW DW			weathered weather			5	3 - 0.1 I - 0.3	
w		Was	shbore			Water inflow	НW			eathered	eu	L M	-	3 - 1.0	
			LC Core			Partial drilling water loss	EW	Extre	eme	ly weathe	red	Н) - 3.0	
INQ	,HQ	vvire	eline Co	ore Dri	11	Complete drilling water loss	FZ CS	Fract Clay		Zone am				- 10.0 >10.0	
<u> </u>												•			

Core Photographs